Получение глюкозы. Реакции глюкозы по спиртовым группам. Физические свойства и нахождение в природе

Доброе время суток, уважаемые десятиклассники!

Мы начинаем знакомиться с новой группой органических соединений - углеводами.
Углеводы... А это те самые сладости, которые вы так любите, (фрукты, торты, конфеты, варенье, шоколад и т.д., особенно много углеводов содержит виноград). Углеводы жизненно важные вещества, которые необходимы каждому организму. Эти вещества расходуются, и человек должен постоянно пополнять их запасы. Понятно, что вещества, входящие в состав тканей организма, не похожие на те, которые он употребляет в пищу. Организм человека перерабатывает пищевые продукты и в процессе своей жизнедеятельности постоянно расходует энергию, которая, как мы знаем, выделяется при окислении в тканях организма, углеводы входят в состав нуклеиновых кислот, осуществляющих биосинтез белка и передачу наследственных признаков.
Животные и человек не синтезируют углеводы. В зеленых растениях при участии хлорофилла и солнечного света осуществляется ряд процессов преобразования поглощенной из воздуха углекислого газа и впитанной из почвы воды. Конечным продуктом этих процесса – фотосинтеза, является сложная молекула углевода.


Углеводы – важный источник энергии для организма, участвуют в обмене веществ. Основными источниками углеводов являются растительные продукты.

Физиологи установили, что при физической нагрузке, которая в 10 раз превышает привычную, человек, соблюдающий жировую диету, лишается сил уже через полчаса. А вот углеводная диета позволяет выдержать такую же нагрузку в течение четырех часов. Оказывается, получение организмом энергии из жиров – процесс длительный. Это объясняется малой реакционной способностью жиров, особенно их углеводородных цепей. Углеводы же, хотя и дают меньше энергии, чем жиры, однако выделяют ее намного быстрее. Поэтому, если предстоит основательная нагрузка, предпочтительнее подкрепиться сладким, а не жирным.

Классификация углеводов.

Углеводы – обширный класс природных соединений.
Обратимся к схеме 1. “Классификация углеводов”. В зависимости от числа остатков моносахаридов в молекуле делятся на моносахариды, дисахариды и полисахариды.

Моносахариды (простые углеводы) – углеводы, которые не гидролизуются. В зависимости от числа атомов углерода подразделяются на триозы, тетрозы, пентозы, гексозы. Для человека наиболее важны глюкоза, фруктоза, галактоза, рибоза, дезоксирибоза.

Дисахариды – углеводы, которые гидролизуются с образованием двух молекул моносахаридов. Наиболее важны для человека сахароза, мальтоза и лактоза.
Полисахариды – высокомолекулярные соединения – углеводы, которые гидролизуются с образованием множества молекул моносахаридов.
Они делятся на перевариваемые и неперевариваемые в желудочно-кишечном тракте. К перевариваемым относят крахмал и гликоген , из вторых для человека важны клетчатка, гемицеллюлоза и пектиновые вещества .
Углеводы часто называют сахаристыми веществами или сахарами . Они могут быть безвкусными, сладкими и горькими. Если сладость раствора сахарозы принимать за 100 %, то сладость фруктозы – 173 %, глюкозы – 81 %, мальтозы и галактозы – 32 %, лактозы – 16 %.

Качественный состав углеводов.


Углеводы – органические соединения, состоящие из углерода, водорода и кислорода, причем водород и кислород входят в соотношении (2: 1) как в воде, отсюда и название.

На основе этой аналогии русский химик К. Шмидт в 1844 г. предложил термин углевода (углерод и вода), а общая формула углеводов Сn(Н 2 О) m
Итак, важнейшим представителем моносахаридов является глюкоза. При изучении, каких некоторых тем мы встречались с вами с этим веществом в курсе химии и биологии: химия – альдегиды, спирты; биология – фотосинтез, строение клетки.

Получение глюкозы.

1. Реакция фотосинтеза.

6СО 2 + 6H 2 O –> С 6 Н 12 О 6 + 6О 2 +Q

2. Реакция полимеризации.

3. Гидролиз крахмала.

(С 6 Н 10 О 5) n + nH 2 O –> nС 6 Н 12 О 6

Физические свойства:

бесцветное кристаллическое вещество, хорошо растворимо в воде, сладкое на вкус, температура плавления 146 о С.


Строение молекулы глюкозы. Изомерия.

Вывод: таким образом, глюкоза – альдегидоспирт, точнее – многоатомный альдегидоспирт. Установлено, что в растворе глюкозы находится не только её альдегидная форма; но и молекулы циклического строения.
Установлено, что у третьего атома углерода группа – ОН расположена иначе, чем у других атомов углерода распространённое строение глюкозы выглядит так:

Превращение молекулы линейного строения в молекулу циклического строения объяснимо, если вспомнить что атомы углерода могут вращаться вокруг сигма -связей. Альдегидная группа может приблизиться к гидроксильной группе 5-го атома углерода, поскольку атом кислорода карбонильной группы несёт на себе частичный – заряд, а атом водород гидроксильной группы – частично + заряд.

Осуществляется своеобразный химический процесс: происходит разрыв -связи карбонильной труппы, к атому кислорода присоединяется атом водорода, а атом кислорода гидроксильной группы с атомом углерода замыкают цепь. Циклические формы находятся в равновесии, превращаясь альфа и бетту форму. Таким образом, в водном растворе глюкозы находятся три изомерные формы . Молекула кристаллической глюкозы альфа -форма, при растворении в воде – открытая форма, а затем снова циклическая бетта-форма. Такая изомерия называется динамической (таутомерия) .

Химические свойства глюкозы.
Моносахариды вступают в химические реакции, свойственные карбонильной и гидроксильной группам.

1) Реакция “серебряного зеркала”
Доказать наличие альдегидной группы в глюкозе можно с помощью аммиачного раствора оксида серебра. Эта реакция называется реакцией серебряного зеркала. Ее используют как качественную для открытия альдегидов . Альдегидная группа глюкозы окисляется до карбоксильной группы. Глюкоза превращается в глюконовую кислоту.
СН 2 ОН – (СНОН) 4 – СОН + Ag 2 O = СН 2 ОН – (СНОН) 4 – СООН + 2Ag
(Реакцию серебряного зеркала используют в промышленности для серебрения зеркал, изготовления колб для термосов, елочных украшений).



2) Взаимодействие глюкозы с гидроксидом меди (II)





3) Гидрирование глюкозы

Альдегидная группа может быть восстановлена в гидроксильную группу действием водорода в присутствии катализатора.


4) Специфические свойства. Большое значение имеют процессы брожения глюкозы, происходящие под действием органических катализаторов-ферментов (они вырабатываются микроорганизмами).

а) спиртовое брожение (под действием дрожжей)

С 6 Н 12 О 6 = 2С 2 Н 5 ОН + 2СО 2

б) молочнокислое брожение (под действием молочнокислых бактерий)
в кондитерской промышленности при изготовлении мягких конфет, десертных сортов шоколада, тортов и различных диетических изделий;
  • в хлебопечении глюкоза улучшает условия брожения, придает пористость и хороший вкус изделиям, замедляет очерствение;
  • в производстве мороженого она занижает точку замерзания, увеличивает его твердость;
  • при производстве фруктовых консервов, соков, ликеров, вин, безалкогольных напитков, так как глюкоза не маскирует аромата и вкуса;
  • в молочной промышленности при изготовлении молочных продуктов и продуктов детского питания рекомендуется использовать глюкозу в определенной пропорции с сахарозой для придания этим продуктам более высокой питательной ценности;
  • в ветеринарии;
  • в птицеводстве;
  • в фармацевтической промышленности.

Кристаллическую глюкозу целесообразно использовать для питания больных, травмированных, выздоравливающих, а также людей, работающих с большими перегрузками.

Медицинскую глюкозу применяют в антибиотиках и других лекарственных препаратах, в том числе для внутривенных вливаний, и для получения витамина С. Техническая глюкоза находит применение в качестве восстановителя в кожевенном производстве, в текстильном – при производстве вискозы, в качестве питательной среды при выращивании различных видов микроорганизмов в медицинской и микробиологической промышленности .




Закрепление:


Алкилирование.Результат взаимодействия зависит от природы алкилирующего агента и условий реакции.Метанол в присутствии сухого НСlметилирует только полуацетальный или полукетальный гидроксил, образуя смесь б-и в-метилглюкопиранозидов. Алкилирование остальных гидроксильных групп удается осуществить только действием сильных алкилирующих средств, например, диметилсульфата (СН 3) 2 SO 4 и щелочи.


б-D-глюкопираноза метил-б-D-глюкопиранозид метил-в-D-глюкопиранозид

метил-2,3,4,5-тетраметил-б-D-глюкопиранозид

Ацилирование. Глюкоза легко этерифицируется с образованием сложных эфиров. Ацилирование обычно осуществляют избытком уксусного ангидрида в присутствии кислотных (H 2 SО 4 , ZnCl 2) или основных (CH 3 COONa) катализаторов. Соотношение между б-и в-аномернымипентаацетатами можно регулировать, меняя условия реакции.


При повышенных температурах в результате взаимопревращений б-и в-ацетатов образуется смесь, состоящая на 90% из б- и на 10% из в-аномеров. При 0 °С образуется в основном в-аномер.

Реакции по карбонильной группе

В результате взаимодействия D-глюкозы с избытком фенилгидразина сначала образуется фенилгидразон, который дегидрируется второй молекулой фенилгидразина, превращающейся при этом в аммиак и анилин с формированием второй карбонильной группы. Последующая реакция третьей молекулы фенилгидразина приводит к бис-фенилгидразону, или озазону.

Реакции глюкозы с гидроксиламином. Оксимы глюкозы в растворах образуют таутомерные циклические б- и в- формы.


На этой реакции основан один из способов укорочения цепи глюкозы:


Дегидратация оксима при действии уксусного ангидрида сопровождается одновременным ацилированием всех гидроксигрупп. В результате последующей переэтерификации с образованием метилацетата и одновременного отщепления HCN образуется альдоза с углеродной цепью, укороченной по сравнению с исходной на один атом углерода, -- D-арабиноза.

Дегидратация глюкозы

Происходит при действии минеральных кислот и приводит к производному фурана - 4-гидроксиметилфурфуролу, который, теряя молекулу муравьиной кислоты, превращается в левулиновую (4-оксопентановую) кислоту.

Реакции окисления


Окисление глюкозы можно осуществить различными по силе окислителями, которые, соответственно этому, дают разные продукты окисления.

Глюкоза окисляется до гликоновойкислоты в мягких условиях такими слабыми окислителями, как:

Бромная вода Вr 2 /Н 2 О


Реактив Толленса (реакция “серебряного зеркала”):

Раствор Фелинга: CuSО 4 + NaOH + KOOC-CHOHCHOHCOONа.

В результате реакции выпадает красный осадок оксида меди.


Сильные окислители, например, концентрированная HNO3, окисляют оба концевых атома углерода глюкозы с образованием сахарных (гликаровых) двухосновных кислот:

В щелочной среде окисление обычно идет с разрывом С-С связи и образованием продуктов окисления с меньшей длиной углеродной цепи.

Расщепление глюкозы осуществляют также действием периодат-иона IO - 4 или тетраацетата свинца (СНзСОО) 4 Рb -- специфических реагентов на б-гликольную группировку.


Анализ продуктов окисления позволяет установить строение моносахаридов.

В результате расщепления D-глюкозы образуются иные продукты реакции:

Реакции восстановления


Восстановление глюкозы амальгамой натрия в разбавленной H 2 SO 4 , NaBH 4 в воде или каталитически водородом над Ni, Pt, Pd идет легко, с образованием многоатомных спиртов. Глюкоза при восстановлении дает D-сорбит.

Брожение моносахаридов

Отличительным свойством моносахаридов является их способность вступать в анаэробное (без доступа кислорода) расщепление под влиянием микроорганизмов или выделенных из них ферментов. Такие процессы называются брожением.

Характер продуктов брожения зависит от типа микроорганизма, условий, при которых оно осуществляется (рН, наличие или отсутствие кислорода, природа субстрата и т. д.).

Спиртовое брожение - это расщепление глюкозы в анаэробных условиях смесью ферментов - зимазой, которую выделяют дрожжевые грибки.

В результате анаэробного ферментативного расщепления глюкоза превращается в пировиноградную кислоту, которая декарбоксилируется пируватдекарбоксилазой. Образующийся уксусный альдегид восстанавливается до этанола восстановленным никотинамидадениндинуклеотидом (НАД·Н), входящим в состав фермента алкогольдегидрогеназы.

Уксуснокислое брожение. Если брожение осуществляется в присутствии кислорода, то в качестве основного продукта получают уксусную кислоту. В атмосфере воздуха возникающий в процессе брожения спирт окисляется кислородом при катализе алкогольоксидазой, выделяемой уксуснокислыми бактериями (Acetobacter).

СН 3 СН 2 ОН > СН 3 СООН + Н 2 О 2

Молочнокислое брожение.При ферментативном брожении под действием Lactobacillusdelbruckii пировиноградная кислота восстанавливается до молочной кислоты с помощью НАД·Н.

г) Лимоннокислое брожение глюкозы можно осуществить под действием Aspergillusniger, Citromycespfefferianus, Citromycesgraber.

Глюкоза в переводе с греческого языка обозначает "сладкий". В природе в больших количествах она встречается в соках ягод и фруктов, в том числе в виноградном соке, отчего и имеет в народе название "винный сахар".

История открытия

Глюкоза была открыта в начале XIX века английским врачом, химиком и философом Уильямом Праутом. Широкую известность данное вещество получило после того, как в 1819 году Анри Бракконо извлек его из древесных опилок.

Физические свойства

Глюкоза представляет собой бесцветный кристаллический порошок сладкого вкуса. Она хорошо растворима в воде, концентрированной серной кислоте, и реактиве Швейцера.

Строение молекулы

Как и все моносахариды, глюкоза является гетерофункциональным соединением (в состав молекулы входят несколько гидроксильных и одна карбоксильная группа). В случае глюкозы карбоксильной группой является альдегидная.

Общая формула глюкозы C6H12O6. Молекулы данного вещества имеют циклическое строение и два пространственных изомера альфа- и бета-формы. В твердом состоянии практически на 100% преобладает альфа форма. В растворе же более устойчива бета-форма (она занимает приблизительно 60%). Глюкоза является конечным продуктом гидролиза всех поли- и дисахаридов, то есть получение глюкозы происходит в подавляющем количестве случаев именно данным путем.

Получение вещества

В природе глюкоза образуется в растениях в результате фотосинтеза. Рассмотрим промышленные и лабораторные способы получения глюкозы. В лаборатории данное вещество является результатом альдольной конденсации. В промышленности же самым распространенным способом является получение глюкозы из крахмала.

Крахмал - это полисахарид, моночасти которого и являются молекулами глюкозы. То есть для ее получения надо разложить полисахарид на моночасти. Каким образом осуществляется данный процесс?

Получение глюкозы из крахмала начинается с того, что крахмал помещают в емкость с водой и перемешивают (крахмальное молоко). Другую емкость с водой доводят до кипения. Стоит отметить, что кипящей воды должно быть в два раза больше, чем крахмального молока. Для того чтобы реакция получения глюкозы прошла до конца, необходим катализатор. В данном случае им выступает соляная или Рассчитанное количество добавляется в емкость с кипящей водой. Затем медленно заливается крахмальное молоко. В данном процессе очень важно не получить клейстер, если все же он образовался, следует продолжать кипячение до полного его исчезновения. В среднем кипячение занимает полтора часа. Для того чтобы быть уверенными, что крахмал полностью гидролизовался, надо провести качественную реакцию. В отобранную пробу добавляется йод. Если жидкость приобретает синюю окраску, значит, гидролиз не закончен, если же становится бурой или красно-бурой, значит, крахмала в растворе больше нет. Но в данном растворе находится не только глюкоза, получение ее было с помощью катализатора, а это значит, что и кислота имеет место быть. Как удалить кислоту? Ответ прост: при помощи нейтрализации чистым мелом и мелко раскрошенным фарфором.

Нейтрализация проверяется Далее происходит фильтрация полученного раствора. Дело за малым: полученную бесцветную жидкость следует выпарить. Образованные кристаллы и есть наш конечный результат. Теперь рассмотрим получение глюкозы из крахмала (реакция).

Химическая суть процесса

Данное уравнение получения глюкозы представлено до промежуточного продукта - мальтозы. Мальтоза - дисахарид, состоящий из двух молекул глюкозы. Наглядно видно, что способы получения глюкозы из крахмала и из мальтозы одинаковые. То есть в продолжение реакции можем поставить следующее уравнение.

В завершение стоит подытожить необходимые условия для того, чтобы получение глюкозы из крахмала прошло успешно.

Необходимые условия

  • катализатор (соляная или серная кислота);
  • температура (не менее 100 градусов);
  • давление (достаточно атмосферного, но увеличение давления ускоряет процесс).

Данный метод самый простой, с большим выходом конечного продукта и минимальными энергетическими затратами. Но он не единственный. Получение глюкозы осуществляется так же из целлюлозы.

Получение из целлюлозы

Суть процесса практически полностью соответствует предыдущей реакции.

Приведено получение глюкозы (формула) из целлюлозы. На деле же этот процесс намного сложнее и энергозатратнее. Итак, продуктом, вступающим в реакцию, являются отходы из деревоперерабатывающей промышленности, измельченные до фракции, размер частиц в которой 1,1 - 1,6 мм. Данный продукт обрабатывается сперва уксусной кислотой, затем перекисью водорода, затем серной кислотой при температуре не ниже 110 градусов и гидромодуле 5. Длительность этого процесса 3-5 часов. Затем, на протяжение двух часов проходит гидролиз серной кислотой при комнатной температуре и гидромодуле 4-5. Затем происходит разбавление водой и инверсия в течение приблизительно полутора часов.

Методы количественного определения

Рассмотрев все способы получения глюкозы, следует изучить методы ее количественного определения. Бывают ситуации, когда в технологическом процессе должен участвовать лишь раствор, содержащий глюкозу, то есть процесс выпаривания жидкости до получения кристаллов - лишний. Тогда возникает вопрос, как определить, какая концентрация данного вещества в растворе. Полученное количество глюкозы в растворе определяют спектрофотометрическим, поляриметрическим и хроматографическим методами. Существует и более специфический метод определения - ферментативный (с помощью фермента глюкозидазы). В данном случае подсчет идет уже продуктов действия этого фермента.

Применение глюкозы

В медицине глюкозу используют при интоксикации (это может быть как пищевое отравление, так и деятельность инфекции). В данном случае раствор глюкозы вводят внутривенно с помощью капельницы. Это значит, что в фармации глюкоза является универсальным антиоксидантом. Так же не малую роль данное вещество играет при обнаружении и диагностировании сахарного диабета. Здесь глюкоза выступает как стресс-тест.

В пищевой промышленности и кулинарии глюкоза занимает очень важное место. Отдельно же следует обозначить роль глюкозы в виноделии, пиво- и самогоноварении. Речь идет о таком методе как получение этанола Рассмотрим подробно данный процесс.

Получение спирта

Технология получения спирта имеет две стадии: брожение и перегонку. Брожение, в свою очередь, осуществляется с помощью бактерий. В биотехнологии уже давно выведены культуры микроорганизмов, которые позволяют получить максимальный выход спирта при минимально затраченном времени. В быту же в качестве помощников реакции могут быть использованы обычные столовые дрожжи.

Прежде всего, глюкоза разводится в воде. В другой емкости разводятся используемые микроорганизмы. Далее, полученные жидкости перемешиваются, встряхиваются и помещаются в емкость с Данная трубка соединяется с еще одной (U-образной формы). В середину второй трубки наливается Конец трубки закрывается резиновой пробкой с полой стеклянной палочкой, имеющей оттянутый конец.

Данная емкость помещается в термостат при температуре 25-27 градусов на четверо суток. В трубке с известковой водой будет наблюдаться помутнение, что свидетельствует о вступлении в реакцию с ней углекислого газа. Как только углекислый газ перестанет выделяться, брожение можно считать оконченным. Далее следует стадия перегонки. В лаборатории для дистилляции спирта используют обратные холодильники - приборы, в которых по внешней стенке проходит холодная вода, тем самым охлаждая образовавшийся газ и переводя его обратно в жидкость.

На данном этапе жидкость, которая находится в нашей емкости, следует нагреть до 85-90 градусов. Таким образом испаряться будет спирт, вода же не будет доведена до кипения.

Механизм получения спирта

Рассмотрим получение спирта из глюкозы в уравнении реакции: С6Н12О6 = 2С2Н5ОН + 2СО2.

Итак, можно отметить, что механизм получения этанола из глюкозы весьма прост. Более того, он известен человечеству уже много веков, и доведен практически до совершенства.

Значение глюкозы в жизни человека

Итак, имея определенное представление о данном веществе, его физических и химических свойствах, использовании в разных сферах промышленности, можно сделать вывод, что такое глюкоза. Получение ее из полисахаридов, уже дает понимание того, что, являясь главной составляющей всех сахаров, глюкоза представляет собой незаменимый источник энергии для человека. В результате метаболизма, из данного вещества образуется аденозинтрифосфорная кислота, которая и преобразуется в единицу энергии.

Но не вся глюкоза, которая поступает в организм человека идет на восполнение энергии. В состоянии бодрствования человек превращает лишь 50 процентов полученной глюкозы в АТФ. Остальное преобразуется в гликоген и скапливается в печени. Гликоген с течением времени разрушается, тем самым регулируя уровень сахара в крови. Количественно содержание данного вещества в организме - прямой показатель его здоровья. От количества сахара в крови зависит гормональное функционирование всех систем. Поэтому стоит помнить, что чрезмерное употребление данного вещества может привести к тяжелым последствиям.

Глюкоза на первый взгляд простое и всем понятное вещество. Даже с точки зрения химии её молекулы имеют достаточно простое строение, а химические свойства понятны и знакомы в быту. Но, несмотря на это, глюкоза имеет большое значение как для самого человека, так и для всех сфер его жизнедеятельности.

1. Общие сведения

а) D-глюкоза - a -D-глюкоза - b -D-глюкоза

б) L-глюкоза

3. Нахождение в природе

4. Получение

5. Применение

6. Физические свойства

7. Химические свойства

8. Рибоза и дезоксирибоза

9. Некоторые интересные факты

10. Литература

Формула глюкозы C 6 H 12 O 6 .

Глюкоза - моносахарид, одна из восьми изомерных альдогексоз. Молярная масса 180 г/моль. Глюкоза в виде D-формы (декстоза, виноградный сахар) является самым распространённым углеводом. D-глюкоза (обычно её называют просто глюкозой) встречается в свободном виде и в виде олигосахаридов (тростниковый сахар, молочный сахар) , полисахаридов (крахмал, гликоген, целлюлоза, декстран) , гликозидов и других производных. В свободном виде D-глюкоза содержится в плодах, цветах и других органах растений, а также в животных тканях (в крови, мозгу и др.) . D-глюкоза является важнейшим источником энергии в организмах животных и микроорганизмов. Как и другие моносахариды D-глюкоза образует несколько форм. Кристаллическая D-глюкоза получена в 2-х формах: a -D-глюкоза и b -D-глюкоза.

a -D-глюкоза

t пл 146° С D = + 112,2° (в воде) , кристаллизируется из воды в виде моногидрата с t пл 83° С.

b -D-глюкоза

Получают кристаллизацией D-глюкозы из пиридина и некоторых других растворов. t пл 148-150° С, D = + 18,9° (в воде) .

В водном растворе устанавливается равновесие между несколькими взаимопревращающимися формами D-глюкозы: a - и b -пиранозными, a - и b -фуранозными, открытой альдегидной и гидратной формой. В равновесной системе в воде D = + 52,7°.

CHO Ѕ HCOH Ѕ HOCH Ѕ HCOH Ѕ HCOH Ѕ CH 2 OH

L-глюкоза

L-глюкоза получена синтетически, восстановлением лактона L-глюконовой кислоты. a -L-глюкоза - кристаллы t пл 142-143° С D = - 95,5° (в воде) и - 51,4° (равновесная система в воде) . Химические свойства L-глюкозы такие же, как у D-глюкозы.

Нахождение в природе

В особом виде глюкоза содержится почти во всех органах зелёных растений. Особенно её много в виноградном соке, поэтому глюкозу иногда называют виноградным сахаром. Мёд в основном состоит из смеси глюкозы с фруктозой.

В организме человека глюкоза содержится в мышцах, в крови (0.1 - 0.12 %) и служит основным источником энергии для клеток и тканей организма. Повышение концентрации глюкозы в крови приводит к усилению выработки гормона поджелудочной железы - инсулина, уменьшающего содержание этого углевода в крови. Химическая энергия питательных веществ, поступающих в организм, заключена в ковалентных связях между атомами. В глюкозе количество потенциальной энергии составляет 2800 кДж на 1 моль (то есть на 180 грамм).

Получение

Первый синтез глюкозы из формальдегида в присутствии гидроксида кальция был произведён А. М. Бутлеровым в 1861 году: O / / Ca(OH) 2

6H-C ѕ ѕ ® C 6 H 12 O 6

\\ H Глюкоза может быть получена гидролизом природных веществ, в состав которых она входит. В производстве её получают гидролизом картофельного и кукурузного крахмала кислотами.

H 2 SO 4 , t (C 6 H 10 O 5) n + n H 2 O ѕ ѕ ® n C 6 H 12 O 6

Полные синтезы глюкозы, осуществлённые, исходя из диброма кролеина, а также из глицеринового альдегида и диоксиацетона, имеют лишь теоретический интерес.

В природе глюкоза наряду с другими углеводами образуется в результате реакции фотосинтеза: хлорофилл 6CO 2 + 6H 2 O ѕ ѕ ѕ ® C 6 H 12 O 6 + 6O 2 - Q

В процессе этой реакции аккумулируется энергия Солнца.

Применение

Глюкоза является ценным питательным продуктом. В организме она подвергается сложным биохимическим превращениям в результате которых образуется диоксид углерода и вода, при это выделяется энергия согласно итоговому уравнению: C 6 H 12 O 6 + 6O 2 ѕ ® 6H 2 O + 6CO 2 + 2800 кДж Этот процесс протекает ступенчато, и поэтому энергия выделяется медленно.

Глюкоза также участвует во втором этапе энергетического обмена животной клетки (расщепление глюкозы) . Суммарное уравнение выглядит так: C 6 H 12 O 6 + 2H 3 PO 4 + 2АДФ ѕ ® 2C 3 H 6 O 3 + 2АТФ + 2H 2 O Так как глюкоза легко усваивается организмом, её используют в медицине в качестве укрепляющего лечебного средства при явлениях сердечной слабости, шоке, она входит в состав кровозаменяющих и противошоковых жидкостей. Широко применяют глюкозу в кондитерском деле (изготовление мармелада, карамели, пряников и т.д.) , в текстильной промышленности в качестве восстановителя, в качестве исходного продукта при производстве аскорбиновых и гликоновых кислот, для синтеза ряда производных сахаров и т.д.

Большое значение имеют процессы брожения глюкозы. Так, например, при квашении капусты, огурцов, молока происходит молочнокислое брожение глюкозы, так же как и при силосовании кормов. Если подвергаемая силосованию масса недостаточно уплотнена, то под влиянием проникшего воздуха происходит маслянокислое брожение и корм становится непригоден к применению.

На практике используется также спиртовое брожение глюкозы, например при производстве пива.

Физические свойства

Глюкоза - бесцветное кристаллическое вещество со сладким вкусом, хорошо растворимое в воде. Из водного раствора она выделяется в виде кристаллогидрата C 6 H 12 O 6 · H 2 O. По сравнению со свекловичным сахаром она менее сладкая.

Химические свойства

Глюкоза обладает химическими свойствами, характерными для спиртов и альдегидов. Кроме того, она обладает и некоторыми специфическими свойствами:

Свойства, обусловленные наличием в молекуле

Специфические свойства

гидроксильных групп

альдегидной группы

1. Реагирует с карбоновыми кислотами с образованием сложных эфиров (пять гидроксильных групп глюкозы вступают в реакцию с кислотами)

1. Реагирует с оксидом серебра (I) в аммиачном растворе (реакция “серебряного зеркала”) : CH 2 OH(CHOH) 4 -COH + Ag 2 O® CH 2 OH(CHOH) 4 -CO 2 H + 2AgЇ

Глюкоза способна подвергаться брожению: а) спиртовое брожение C 6 H 12 O 6® 2CH 3 -CH 2 OH+ CO 2

б) молочнокислое брожение C 6 H 12 O 6® 2CH 3 -CHOH-COOH молочная кислота

2. Как многоатомный спирт реагирует с гидроксидом меди (II) c образованием алкоголята меди (II)

2. Окисляется гидроксидом меди (II) (с выпадением красного осадка) 3. Под действием восстановителей превращается в шестиатомный спирт

в) маслянокислое брожение C 6 H 12 O 6® C 3 H 7 COOH + 2H 2 + 2CO 2

масляная кислота

D-глюкоза даёт общие реакции на альдозы, она является восстанавливающим сахаром, образует ряд производных за счёт альдегидной группы (фенилгидразон, n- бромфенилгидразон и др.) . Озазон глюкозы идентичен озанону маннозы, которая является эпимером глюкозы, и озазону фруктозы. При восстановлении глюкозы образуется шестиатомный спирт сорбит; при окислении альдегидной группы глюкозы - одноосновная D-глюконовая кислота, при дальнейшем окислении - двухосновная D-сахарная кислота. При окислении только вторичной спиртовой группы глюкозы (при условии защиты альдегидной группы) образуется D-глюкуроновая кислота. Образование D-глюкуроновой кислоты из D-глюкозы может происходить при действии ферментов оксидаз или дегидрогеназ глюкозы. При пиролизе D-глюкозы образуются гликозаны: a -гликозан и левоглюкозан (b -глюкозан) .

Для количественного определения глюкозы применяются калориметрические, иодометрические и другие методы.

Рибоза и дезоксирибоза

Из пентоз большой интерес представляют рибоза и дезоксирибоза, ибо они входят в состав нуклеиновых кислот. Структурные формулы рибозы и дезоксирибозы с открытой цепью следующие: H H H H O H H H H O Ѕ Ѕ Ѕ Ѕ // Ѕ Ѕ Ѕ Ѕ // H - C - C - C - C - C H - C - C - C - C - C Ѕ Ѕ Ѕ Ѕ \ Ѕ Ѕ Ѕ Ѕ \ OH OH OH OH H OH OH OH H H рибоза дезоксирибоза

Некоторые интересные факты

Некоторые лягушки нашли применение глюкозе в своём организме - любопытное, хотя и гораздо менее важное. В зимние время иногда можно найти лягушек, вмёрзших в ледяные глыбы, но после оттаивания земноводные оживают. Как же они ухитряются не замёрзнуть насмерть? Оказывается, с наступлением холодов в крови лягушки в 60 раз увеличивается количество глюкозы. Это мешает образованию внутри организма кристалликов льда.

Гликолиз

Герои романа Жюля Верна “Дети капитана Гранта” только собирались поужинать мясом подстреленной ими дикой ламы (гуанако) , как вдруг выяснилось, что оно совершенно не съедобно.

“Быть может, оно слишком долго лежало?” - озадаченно спросил один из них.

“Нет, оно, к сожалению, слишком долго бежало! - ответил учёный-географ Паганель - Мясо гуанако вкусно только тогда, когда животное убито во время отдыха, но если за ним долго охотиться и животное долго бежало, тогда его мясо несъедобно”. Вряд ли Паганель сумел бы объяснить причину описанного им явления. Но, пользуясь данными современной науки, сделать это совсем нетрудно. Начать придётся, правда, несколько издалека.

Когда клетка дышит кислородом, глюкоза “сгорает” в ней, превращаясь в воду и углекислый газ, и выделяет энергию. Но, предположим, животное долго бежит, или человек быстро выполняет какую-то тяжёлую физическую работу, например, колет дрова. Кислород не успевает попасть в клетки мышц. Тем не менее клетки “задыхаются” не сразу. Начинается любопытный процесс - гликолиз (что в переводе означает “расщепление сахара”) . При распаде глюкозы образуется не вода и углекислота, а более сложное вещество - молочная кислота. Каждый, кто пробовал кислое молоко или кефир, знаком с её вкусом.

Энергии при гликолизе выделяется в 13 раз меньше, чем при дыхании. Чем больше молочной кислоты накопилось в мышцах, тем сильнее человек или животное чувствует их усталость. Наконец, все запасы глюкозы в мышцах истощаются. Необходим отдых. Поэтому, перестав колоть дрова или взбежав по длинной лестнице, человек обычно “переводит дух” , восполняя недостаток кислорода в крови. Именно молочная кислота сделала невкусным мясо животного, подстреленного героями Жюля Верна.

Литература

Краткая химическая энциклопедия

Учебник Химия 10 класс

Энциклопедия для детей - Биологии

Химические свойства моносахаридов обусловлены особенностями их строения.

Рассмотрим химические свойства на примере глюкозы.

Моносахариды проявляют свойства спиртов и карбонильных соединений.

I. Реакции по карбонильной группе

1. Окисление.

а) Как и у всех альдегидов, окисление моносахаридов приводит к соответствующим кислотам. Так, при окислении глюкозы аммиачным раствором гидрата окиси серебра образуется глюконовая кислота (реакция "серебряного зеркала").

Соль глюконовой кислоты – глюконат кальция – известное лекарственное средство.

б) Реакция моносахаридов с гидроксидом меди при нагревании так же приводит к альдоновым кислотам.

голубой кирпично-красный

Эти реакции являются качественными на глюкозу как альдегид.

в) Более сильные окислительные средства окисляют в карбоксильную группу не только альдегидную, но и первичную спиртовую группы, приводя к двухосновным сахарным (альдаровым) кислотам. Обычно для такого окисления используют концентрированную азотную кислоту.

2. Восстановление.

Восстановление сахаров приводит к многоатомным спиртам. В качестве восстановителя используют водород в присутствии никеля, алюмогидрид лития и др.

3. Несмотря на схожесть химических свойств моносахаридов с альдегидами, глюкоза не вступает в реакцию с гидросульфитом натрия (NaHSO 3).

II. Реакции по гидроксильным группам

Реакции по гидроксильным группам моносахаридов осуществляются, как правило, в полуацетальной (циклической) форме.

1. Алкилирование (образование простых эфиров).

При действии метилового спирта в присутствии газообразного хлористого водорода атом водорода гликозидного гидроксила замещается на метильную группу.

При использовании более сильных алкилирующих средств, каковыми являются, например, йодистый метил или диметилсульфат, подобное превращение затрагивает все гидроксильные группы моносахарида.

2. Ацилирование (образование сложных эфиров).

При действии на глюкозу уксусного ангидрида образуется сложный эфир – пентаацетилглюкоза.

3. Как и все многоатомные спирты, глюкоза с гидроксидом меди (II) на холоду с образованием глюконата меди (II) дает интенсивное синее окрашивание – качественная реакция на глюкозу как многоатомный спирт.

ярко синий раствор

III. Специфические реакции

1. Горение (а также полное окисление в живом организме):

C 6 H 12 O 6 + 6O 2 6CO 2 +6H 2 O

2. Реакции брожения

Кроме приведенных выше, глюкоза характеризуется и некоторыми специфическими свойствами - процессами брожения. Брожением называется расщепление молекул сахаров под воздействием ферментов (энзимов). Брожению подвергаются сахара с числом углеродных атомов, кратным трем. Существует много видов брожения, среди которых наиболее известны следующие:

а) спиртовое брожение

C 6 H 12 O 6 → 2CH 3 –CH 2 OH(этиловый спирт) + 2CO 2

б) молочнокислое брожение

в) маслянокислое брожение

C 6 H 12 O 6 → CH 3 –CH 2 –СН 2 –СОOH(масляная кислота) + 2Н 2 + 2CO 2

Упомянутые виды брожения, вызываемые микроорганизмами, имеют широкое практическое значение. Например, спиртовое – для получения этилового спирта, в виноделии, пивоварении и т.д., а молочнокислое – для получения молочной кислоты и кисломолочных продуктов.

Фруктоза вступает во все реакции, характерные для многоатомных спиртов, однако реакции альдегидной группы, в отличие от глюкозы, для нее не характерны.

Химические свойства рибозы C 5 H 10 O 5 аналогичны глюкозе.

Д) Биологическая роль глюкозы.

D-глюкоза (виноградный сахар) широко распространена в природе: содержится в винограде и других плодах, в меде. Она является обязательным компонентом крови и тканей животных и непосредственным источником энергии для клеточных реакций. Уровень глюкозы в крови человека постоянен и находится в пределах 0,08-0,11%. Во всем объеме крови взрослого человека содержится 5-6 г. глюкозы. Такого количества достаточно для покрытия энергетических затрат организма в течение 15 мин. его жизнедеятельности. При некоторых патологиях, например, при заболевании сахарным диабетом, содержание глюкозы в крови повышается, и избыток её выводится с мочой. При этом количество глюкозы в моче может возрасти до 12% против обычного – 0,1%.

3. Дисахариды.

Олигосахариды - углеводы, молекулы которых содержат от 2 до 8-10 остатков моносахаридов, соединенных гликозидными связями. В соответствии с этим различают дисахариды, трисахариды и т. д.

Дисахариды - сложные сахара, каждая молекула которых при гидролизе распадается на две молекулы моносахаридов. Дисахариды наряду с полисахаридами являются одним из основных источников углеводов в пище человека и животных. По своему строению дисахариды являются гликозидами, в которых две молекулы моносахаридов соединены гликозидной связью.

Строение

1. Молекулы дисахаридов могут содержать два остатка одного моносахарида или два остатка разных моносахаридов;

2. Связи, образующиеся между остатками моносахаридов, могут быть двух типов:

а) в образовании связи принимают участие полуацетальные гидроксилы обеих молекул моносахаридов. Например, образование молекулы сахарозы;

б) в образовании связи принимают участие полуацетальный гидроксил одного моносахарида и спиртовый гидроксил другого моносахарида. Например, образование молекул мальтозы, лактозы и целлобиозы.

Для установления строения дисахаридов необходимо знать: из каких моносахаридов он построен, какова конфигурация аномерных центров у этих моносахаридов (- или -), каковы размеры цикла (фураноза или пираноза) и с участием каких гидроксилов связаны две молекулы моносахарида.

Дисахариды подразделяются на две группы: восстанавливающие и невосстанавливающие.

Среди дисахаридов особенно широко известны мальтоза, лактоза и сахароза.

Мальтоза (солодовый сахар), являющаяся α-глюкопиранозил-(1-4)-α-глюкопиранозой, образуется в качестве промежуточного продукта при действии амилаз на крахмал (или гликоген), содержит два остатка α-D-глюкозы. Название сахара, чей полуацетальный гидроксил участвует в образовании гликозидной связи, оканчивается на "ил".

В молекуле мальтозы у второго остатка глюкозы имеется свободный полуацетальный гидроксил. Такие дисахариды обладают восстанавливающими свойствами.

К восстанавливающим дисахаридам относится, в часности, мальтоза (солодовый сахар), содержащаяся в солоде, т.е. проросших, а затем высушенных и измельченных зернах хлебных злаков.

(мальтоза)

Мальтоза составлена из двух остатков D- глюкопиранозы, которые связаны (1–4) -гликозидной связью, т.е. в образовании простой эфирной связи участвуют гликозидный гидроксил одной молекулы и спиртовой гидроксил при четвертом атоме углерода другой молекулы моносахарида. Аномерный атом углерода (С 1), участвующий в образовании этой связи, имеет - конфигурацию, а аномерный атом со свободным гликозидным гидроксилом (обозначен красным цветом) может иметь как α- (α- мальтоза), так и β- конфигурацию (β- мальтоза).

Мальтоза представляет собой белые кристаллы, хорошо растворимые в воде, сладкие на вкус, однако значительно меньше, чем у сахара (сахарозы).

Как видно, в мальтозе имеется свободный гликозидный гидроксил, вследствие чего сохраняется способность к раскрытию цикла и переходу в альдегидную форму. В связи с этим, мальтоза способна вступать в реакции, характерные для альдегидов, и, в частности, давать реакцию "серебряного зеркала", поэтому ее называют восстанавливающим дисахаридом. Кроме того, мальтоза вступает во многие реакции, характерные для моносахаридов, например, образует простые и сложные эфиры.

Дисахарид лактоза (молочный сахар) содержится только в молоке и состоит из D-галактозы и D-глюкозы. Это - α-глюкопиранозил-(1-4)-глюкопираноза:

Поскольку в молекуле лактозы имеется свободный полуацетальный гидроксил (в остатке глюкозы), она принадлежит к числу редуцирующих дисахаридов.

Одним из наиболее распространенных дисахаридов является сахароза (тростниковый или свекольный сахар) − обычный пищевой сахар. Молекула сахарозы состоит из одного остатка D-глюкозы и одного остатка D-фруктозы. Следовательно, это − α-глюкопиранозил-(1-2)-β-фруктофуранозид:

В отличие от большинства дисахаридов сахароза не имеет свободного полуацетального гидроксила и не обладает восстанавливающими свойствами.

К невосстанавливающим дисахаридам относится сахароза (свекловичный или тростниковый сахар). Она содержится в сахарном тростнике, сахарной свекле (до 28% от сухого вещества), соках растений и плодах. Молекула сахарозы построена из α, D- глюкопиранозы и β, D- фруктофуранозы.

(сахароза)

В противоположность мальтозе гликозидная связь (1–2) между моносахаридами образуется за счет гликозидных гидроксилов обеих молекул, то есть свободный гликозидный гидроксил отсутствует. Вследствие этого отсутствует восстанавливающая способность сахарозы, она не дает реакции "серебряного зеркала", поэтому ее относят к невосстанавливающим дисахаридам.

Среди природных трисахаридов важное значение имеют немногие. Наиболее известна рафиноза, содержащая остатки фруктозы, глюкозы и галактозы, которая находится в больших количествах в сахарной свекле и во многих других растениях.

В целом олигосахариды, присутствующие в растительных тканях, разнообразнее по своему составу, чем олигосахариды животных тканей.

Все они имеют ту же эмпирическую формулу С 12 Н 22 О 11 , т.е. являются изомерами.

Сахароза – белое кристаллическое вещество, сладкое на вкус, хорошо растворимое в воде.

Для сахарозы характерны реакции по гидроксильным группам. Как и все дисахариды, сахароза при кислотном или ферментативном гидролизе превращается в моносахариды, из которых она составлена.

Дисахариды – типичные сахароподобные углеводы; это твердые бесцветные кристаллические вещества, очень хорошо растворимое в воде, имеющие сладкие вкус.

Из дисахаридов наибольшее значение имеет сахароза C 12 H 22 O 11:

Молекула сахарозы состоит из остатков молекул глюкозы и фруктозы.