1.2 определение и способы задания цепи маркова. Однородные цепи маркова. Расширяем словарную базу

Марковский процесс - протекающий в системе случайный процесс, который обладает свойством: для каждого момента времени t 0 вероятность любого состояния системы в будущем (при t>t 0) зависит только от ее состояния в настоящем (при t= t 0) и не зависит от того, когда и каким образом система пришла в это состояние (т.е. как развивался процесс в прошлом).

На практике часто встречаются случайные процессы, которые с той или иной степенью приближения можно считать Марковскими.

Любой марковский процесс описывают с помощью вероятностей состояний и переходных вероятностей.

Вероятности состояний P k (t) марковского процесса – это вероятности того, что случайный процесс (система) в момент времени t находится в состоянии S k:

Переходные вероятности марковского процесса – это вероятности перехода процесса (системы) из одного состояния в другое:

Марковский процесс называется однородным , если вероятности перехода за единицу времени не зависят от того, где на оси времени происходит переход.

Наиболее простым процессом является цепь Маркова – марковский случайный процесс с дискретным временем и дискретным конечным множеством состояний.

При анализе цепи Маркова составляют граф состояний , на котором отмечают все состояния цепи (системы) и ненулевые вероятности за один шаг.

Марковскую цепь можно представить себе так, как будто точка, изображающая систему, случайным образом перемещается по графу состояний, перетаскивая за один шаг из состояния в состояние или задерживаясь на несколько шагов в одном и том же состоянии.

Переходные вероятности цепи Маркова за один шаг записывают в виде матрицы P=||P ij ||, которую называют матрицей вероятностей перехода или просто переходной матрицей.

Пример: множество состояний студентов специальности следующие:

S 1 – первокурсник;

S 2 – второкурсник …;

S 5 – студент 5 курса;

S 6 –специалист, окончивший вуз;

S 7 – человек, обучавшийся в вузе, но не окончивший его.

Из состояния S 1 за год возможны переходы в состояние S 2 с вероятностью r 1 ; S 1 с вероятностью q 1 и S 7 с вероятностью p 1 , причем:

r 1 +q 1 +p 1 =1.

Построим граф состояний данной цепи Маркова и разметим его переходными вероятностями (отличными от нуля).

Составим матрицу вероятностей переходов:

Переходные матрицы обладают свойством:

Все их элементы неотрицательны;

Их суммы по строкам равны единице.

Матрицы с таким свойством называют стохастическими.

Матрицы переходов позволяют вычислить вероятность любой траектории цепи Маркова с помощью теоремы умножения вероятностей.

Для однородных цепей Маркова матрицы переходов не зависят от времени.



При изучении цепей Маркова наибольший интерес представляют:

Вероятности перехода за m шагов;

Распределение по состояниям на шаге m→∞;

Среднее время пребывания в определенном состоянии;

Среднее время возвращения в это состояние.

Рассмотрим однородную цепь Маркова с n состояниями. Для получения вероятности перехода из состояния S i в состояние S j за m шагов в соответствии с формулой полной вероятности следует просуммировать произведения вероятности перехода из состояния Siв промежуточное состояние Sk за l шагов на вероятность перехода из Sk в Sj за оставшиеся m-l шагов, т.е.

Это соотношение для всех i=1, …, n; j=1, …,n можно представить как произведение матриц:

P(m)=P(l)*P(m-l).

Таким образом, имеем:

P(2)=P(1)*P(1)=P 2

P(3)=P(2)*P(1)=P(1)*P(2)=P 3 и т.д.

P(m)=P(m-1)*P(1)=P(1)*P(M-1)=P m ,

что дает возможность найти вероятности перехода между состояниями за любое число шагов, зная матрицу переходов за один шаг, а именно P ij (m) – элемент матрицы P(m) есть вероятность перейти из состояния S i в состояние S j за m шагов.

Пример : Погода в некотором регионе через длительные периоды времени становится то дождливой, то сухой. Если идет дождь, то с вероятностью 0,7 он будет идти на следующий день; если в какой-то день сухая погода, то с вероятностью 0,6 она сохраниться и на следующий день. Известно, что в среду погода была дождливая. Какова вероятность того, что она будет дождливой в ближайшую пятницу?

Запишем все состояния цепи Маркова в данной задаче: Д – дождливая погода, С – сухая погода.

Построим граф состояний:

Ответ: р 11 =р(Д пят |Д ср) =0,61.

Пределы вероятностей р 1 (m), р 2 (m),…, р n (m) при m→∞, если они существуют, называются предельными вероятностями состояний .

Можно доказать следующую теорему: если в цепи Маркова из +каждого состояния можно перейти (за то или иное число шагов) в каждое другое, то предельные вероятности состояний существуют и не зависят от начального состояния системы.

Таким образом, при m→∞ в системе устанавливается некоторый предельный стационарный режим, при котором каждое из состояний осуществляется с некоторой постоянной вероятностью.

Вектор р, составленный из предельных вероятностей, должен удовлетворять соотношению: р=p*P.

Среднее время пребывания в состоянии S i за время T равно p i *T, где p i - предельная вероятность состояния S i . Среднее время возвращения в состояние S i равно .

Пример.

Для многих экономических задач необходимо знать чередование годов с определенными значениями годовых стоков рек. Конечно, это чередование не может быть определено абсолютно точно. Для определения вероятностей чередования (перехода) разделим стоки, введя четыре градации (состояния системы): первую (самый низкий сток), вторую, третью, четвертую (самый высокий сток). Будем для определенности считать, что за первой градацией никогда не следует четвертая, а за четвертой – первая из-за накопления влаги (в земле, водохранилище и т.д.). Наблюдения показали, что в некоторой области остальные переходы возможны, и:

а) из первой градации можно переходить в каждую из средних вдвое чаще, чем опять в первую, т.е.

p 11 =0,2; p 12 =0,4; p 13 =0,4; p 14 =0;

б) из четвертой градации переходы во вторую и третью градации бывают в четыре и пять раз чаще, чем возвращениеекак д во вторую, т.е.

твертую, т.е.

в четвертую, т.е.

p 41 =0; p 42 =0,4; p 43 =0,5; p 44 =0,1;

в) из второй в другие градации могут быть только реже: в первую - в два раза, в третью на 25%, в четвертую - в четыре раза реже, чем переход во вторую, т.е.

p 21 =0,2;p 22 =0,4; p 23 =0,3; p 24 =0,1;

г) из третьей градации переход во вторую градацию столь же вероятен, как возвращение в третью градацию, а переходы в первую и четвертую градации бывают в четыре раза реже, т.е.

p 31 =0,1; p 32 =0,4; p 33 =0,4; p 34 =0,1;

Построим граф:

Составим матрицу вероятностей перехода:

Найдем среднее время между засухами и полноводными годами. Для этого нужно найти предельное распределение. Оно существует, т.к. условие теоремы выполняется (матрица Р 2 не содержит нулевых элементов, т.е. за два шага можно перейти из любого состояния системы в любое другое).

Откуда p 4 =0.08; p 3 =; p 2 =; p 1 =0.15

Периодичность возвращения в состояние S i равна .

Следовательно, периодичность засушливых лет в среднем равна 6.85, т.е. 6-7 лет, а дождливых 12 лет.

Цепи Маркова служат хорошим введением в теорию случайных процессов, т.е. теорию простых последовательностей семейств случайных величин, обычно зависящих от параметра, который в большинстве приложений играет роль времени. Она предназначена, главным образом, для полного описания как долговременного, так и локального поведения процесса. Приведем некоторые наиболее изученные в этом плане вопросы.

Броуновское движение и его обобщения - диффузионные процессы и процессы с независимыми приращениями. Теория случайных процессов способствовала углублению связи между теорией вероятностей, теорией операторов и теорией дифференциальных уравнений, что, помимо прочего, имело важное значение для физики и других приложений. К числу приложений относятся процессы, представляющие интерес для актуарной (страховой) математики, теории массового обслуживания, генетики, регулирования дорожного движения, теории электрических цепей, а также теории учета и накопления товаров.

Мартингалы. Эти процессы сохраняют достаточно свойств цепей Маркова, чтобы для них оставались в силе важные эргодические теоремы. От цепей Маркова мартингалы отличаются тем, что когда текущее состояние известно, только математическое ожидание будущего, но необязательно само распределение вероятностей, не зависит от прошлого. Помимо того, что теория мартингалов представляет собой важный инструмент для исследования, она обогатила новыми предельными теоремами теорию случайных процессов, возникающих в статистике, теории деления атомного ядра, генетике и теории информации.

Стационарные процессы. Самая старая из известных эргодических теорем, как отмечалось выше, может быть интерпретирована как результат, описывающий предельное поведение стационарного случайного процесса. Такой процесс обладает тем свойством, что все вероятностные законы, которым он удовлетворяет, остаются инвариантными относительно сдвигов по времени. Эргодическую теорему, впервые сформулированную физиками в качестве гипотезы, можно представить как утверждение о том, что при определенных условиях среднее по ансамблю совпадает со средним по времени. Это означает, что одну и ту же информацию можно получить из долговременного наблюдения за системой и из одновременного (и одномоментного) наблюдения многих независимых копий той же самой системы. Закон больших чисел есть не что иное, как частный случай эргодической теоремы Биркгофа. Интерполяция и предсказание поведения стационарных гауссовских процессов, понимаемых в широком смысле, служат важным обобщением классической теории наименьших квадратов. Теория стационарных процессов - необходимое орудие исследования во многих областях, например, в теории связи, которая занимается изучением и созданием систем, передающих сообщения при наличии шума или случайных помех.

Марковские процессы (процессы без последействия) играют огромную роль в моделировании систем массового обслуживания (СМО), а также в моделировании и выборе стратегии управления социально-экономическими процессами, происходящими в обществе. В качестве примера рассмотрим управляемые цепи Маркова.

по себе, а отчасти рассматриваем мы ее из-за того, что ее изложение не требует введения большого количества новых терминов.

Рассмотрим задачу об осле, стоящем точно между двумя копнами: соломы ржи и соломы пшеницы (рис. 10.5).

Осел стоит между двумя копнами: "Рожь" и "Пшеница" (рис. 10.5). Каждую минуту он либо передвигается на десять метров в сторону первой копны (с вероятностью ), либо в сторону второй копны (с вероятностью ), либо остается там, где стоял (с вероятностью ); такое поведение называется одномерным случайным блужданием. Будем предполагать, что обе копны являются "поглощающими" в том смысле, что если осел подойдет к одной из копен, то он там и останется. Зная расстояние между двумя копнами и начальное положение осла, можно поставить несколько вопросов, например: у какой копны он очутится с большей вероятностью и какое наиболее вероятное время ему понадобится, чтобы попасть туда?


Рис. 10.5.

Чтобы исследовать эту задачу подробнее, предположим, что расстояние между копнами равно пятидесяти метрам и что наш осел находится в двадцати метрах от копны "Пшеницы". Если места, где можно остановиться, обозначить через ( - сами копны), то его начальное положение можно задать вектором -я компонента которого равна вероятности того, что он первоначально находится в . Далее, по прошествии одной минуты вероятности его местоположения описываются вектором , а через две минуты - вектором . Ясно, что непосредственное вычисление вероятности его нахождения в заданном месте по прошествии минут становится затруднительным. Оказалось, что удобнее всего ввести для этого матрицу перехода .

Пусть - вероятность того, что он переместится из в за одну минуту. Например, и . Эти вероятности называются вероятностями перехода , а -матрицу называют матрицей перехода . Заметим, что каждый элемент матрицы неотрицателен и что сумма элементов любой из строк равна единице. Из всего этого следует, что - начальный вектор -строка, определенный выше, местоположение осла по прошествии одной минуты описывается вектором-строкой , а после минут - вектором . Другими словами, -я компонента вектора определяет вероятность того, что по истечении минут осел оказался в .

Можно обобщить эти понятия. Назовем вектором вероятностей вектор -строку, все компоненты которого неотрицательны и дают в сумме единицу. Тогда матрица перехода определяется как квадратная матрица , в которой каждая строка является вектором вероятностей. Теперь можно определить цепь Маркова (или просто цепь) как пару , где есть - матрица перехода , а есть - вектор -строка. Если каждый элемент из рассматривать как вероятность перехода из позиции в позицию , а - как начальный вектор вероятностей, то придем к классическому понятию дискретной стационарной цепи Маркова , которое можно найти в книгах по теории вероятностей (см. Феллер В. Введение в теорию вероятностей и ее приложения. Т.1. М.: Мир. 1967) Позиция обычно называется состоянием цепи . Опишем различные способы их классификации.

Нас будет интересовать следующее: можно ли попасть из одного данного состояния в другое, и если да, то за какое наименьшее время. Например, в задаче об осле из в можно попасть за три минуты и вообще нельзя попасть из в . Следовательно, в основном мы будем интересоваться не самими вероятностями , а тем, положительны они или нет. Тогда появляется надежда, что все эти данные удастся представить в виде орграфа , вершины которого соответствуют состояниям, а дуги указывают на то, можно ли перейти из одного состояния в другое за одну минуту. Более точно, если каждое состояние представлено соответствующей ему вершиной).

Марковский случайный процесс с дискретными состояниями и дискретным временем называют марковской цепью . Для такого процесса моменты t 1 , t 2 , когда система S может менять свое состояние, рассматривают как последовательные шаги процесса, а в качестве аргумента, от которого зависит процесс, выступает не время t , а номер шага 1, 2, k , Случайный процесс в этом случае характеризуется последовательностью состояний S(0) , S(1) , S(2) , S(k) , где S(0) - начальное состояние системы (перед первым шагом); S(1) - состояние системы после первого шага; S(k) - состояние системы после k -го шага...

Событие {S(k) = S i }, состоящее в том, что сразу после k -го шага система находится в состоянии S i (i = 1, 2,), является случайным событием. Последовательность состояний S(0) , S(1) , S(k) , можно рассматривать как последовательность случайных событий. Такая случайная последовательность событий называется марковской цепью , если для каждого шага вероятность перехода из любого состояния S i в любое S j не зависит от того, когда и как система пришла в состояние S i . Начальное состояние S(0) может быть заданным заранее или случайным.

Вероятностями состояний цепи Маркова называются вероятности P i (k) того, что после k -го шага (и до (k + 1)-го) система S будет находиться в состоянии S i (i = 1, 2, n ). Очевидно, для любою k .

Начальным распределением вероятностей Марковской цепи называется распределение вероятностей состояний в начале процесса:

P 1 (0), P 2 (0), P i (0), P n (0).

В частном случае, если начальное состояние системы S в точности известно S(0) = S i , то начальная вероятность Р i (0) = 1, а все остальные равны нулю.

Вероятностью перехода (переходной вероятностью) на k -м шаге из состояния S i в состояние S j называется условная вероятность того, что система S после k -го шага окажется в состоянии S j при условии, что непосредственно перед этим (после k - 1 шага) она находилась в состоянии S i .

Поскольку система может пребывать в одном из n состояний, то для каждого момента времени t необходимо задать n 2 вероятностей перехода P ij , которые удобно представить в виде следующей матрицы:

где Р ij - вероятность перехода за один шаг из состояния S i в состояние S j ;

Р ii - вероятность задержки системы в состоянии S i .

Такая матрица называется переходной или матрицей переходных вероятностей.

Если переходные вероятности не зависят от номера шага (от времени), а зависят только от того, из какого состояния в какое осуществляется переход, то соответствующая цепь маркова называется однородной .

Переходные вероятности однородной Марковской цепи Р ij образуют квадратную матрицу размера n m .

Отметим некоторые ее особенности:


1. Каждая строка характеризует выбранное состояние системы, а ее элементы представляют собой вероятности всех возможных переходов за один шаг из выбранного (из i -го) состояния, в том числе и переход в самое себя.

2. Элементы столбцов показывают вероятности всех возможных переходов системы за один шаг в заданное (j -е) состояние (иначе говоря, строка характеризует вероятность перехода системы из состояния, столбец - в состояние).

3. Сумма вероятностей каждой строки равна единице, так как переходы образуют полную группу несовместных событий:

4. По главной диагонали матрицы переходных вероятностей стоят вероятности Р ii того, что система не выйдет из состояния S i , а останется в нем.

Если для однородной Марковской цепи заданы начальное распределение вероятностей и матрица переходных вероятностей , то вероятности состояний системы P i (k) (i, j = 1, 2, n ) определяются по рекуррентной формуле:

Пример 1. Рассмотрим процесс функционирования системы - автомобиль. Пусть автомобиль (система) в течение одной смены (суток) может находиться в одном из двух состояний: исправном (S 1 ) и неисправном (S 2 ). Граф состояний системы представлен на рис. 3.2.

Рис. 3.2.Граф состояний автомобиля

В результате проведения массовых наблюдений за работой автомобиля составлена следующая матрица вероятностей перехода:

где P 11 = 0,8 - вероятность того, что автомобиль останется в исправном состоянии;

P 12 = 0,2 - вероятность перехода автомобиля из состояния «исправен» в состояние «неисправен»;

P 21 = 0,9 - вероятность перехода автомобиля из состояния «неисправен» в состояние «исправен»;

P 22 = 0,1 - вероятность того, что автомобиль останется в состоянии «неисправен».

Вектор начальных вероятностей состояний автомобиля задан , т.е. Р 1 (0) = 0 и Р 2 (0) =1.

Требуется определить вероятности состояний автомобиля через трое суток.

Используя матрицу переходных вероятностей и формулу (3.1), определим вероятности состояний P i (k) после первого шага (после первых суток):

P 1 (1) = P 1 (0)×P 11 + P 2 (0)×P 21 = 0?0,8 + 1?0,9 = 0,9;

P 2 (1) = P 1 (0)×P 12 + P 2 (0)×P 22 = 0?0,2 + 1?0,1 = 0,2.

Вероятности состояний после второго шага (после вторых суток) таковы:

P 1 (2) = P 1 (1)×P 11 + P 2 (1)×P 21 = 0,9×0,8 + 0,1×0,9 = 0,81;

= 0,9×0,2 + 0,1×0,1 = 0,19.

Вероятности состояний после третьего шага (после третьих суток) равны:

P 1 (3) = P 1 (2)×P 11 + P 2 (2)×P 21 = 0,81×0,8 + 0,19×0,9 = 0,819;

= 0,81×0,2 + 0,19×0,1 = 0,181.

Таким образом, после третьих суток автомобиль будет находиться в исправном состоянии с вероятностью 0,819 и в состоянии «неисправен» с вероятностью 0,181.

Пример 2. В процессе эксплуатации ЭВМ может рассматриваться как физическая система S , которая в результате проверки может оказаться в одном из следующих состояний: S 1 - ЭВМ полностью исправна; S 2 - ЭВМ имеет неисправности в оперативной памяти, при которых она может решать задачи; S 3 - ЭВМ имеет существенные неисправности и может решать ограниченный класс задач; S 4 - ЭВМ полностью вышла из строя.

В начальный момент времени ЭВМ полностью исправна (состояние S 1 ). Проверка ЭВМ производится в фиксированные моменты времени t 1 , t 2 , t 3 . Процесс, протекающий в системе S , может рассматриваться как однородная марковская цепь с тремя шагами (первая, вторая, третья проверки ЭВМ). Матрица переходных вероятностей имеет вид

Определить вероятности состояний ЭВМ после трех проверок.

Решение . Граф состояний имеет вид, показанный на рис. 3.3. Против каждой стрелки проставлена соответствующая вероятность перехода. Начальные вероятности состояний P 1 (0) = 1, P 2 (0) = P 3 (0) = P 4 (0) = 0.

Рис. 3.3. Граф состояний ЭВМ

По формуле (3.1), учитывая в сумме вероятностей только те состояния, из которых возможен непосредственный переход в данное состояние, находим:

P 1 (1) = P 1 (0)×P 11 = 1×0,3 = 0,3;

P 2 (1) = P 1 (0)×P 12 = 1×0,4 = 0,4;

P 3 (1) = P 1 (0)×P 13 = 1×0,1 = 0,1;

P 4 (1) = P 1 (0)×P 14 = 1×0,2 = 0,2;

P 1 (2) = P 1 (1)×P 11 = 0,3×0,3 = 0,09;

P 2 (2) = P 1 (1)×P 12 + P 2 (1)×P 22 = 0,3×0,4 + 0,4×0,2 = 0,20;

P 3 (2) = P 1 (1)×P 13 + P 2 (1)×P 23 + P 3 (1)×P 33 = 0,27;

P 4 (2) = P 1 (1)×P 14 + P 2 (1)×P 24 + P 3 (1)×P 34 + P 4 (1)×P 44 = 0,44;

P 1 (3) = P 1 (2)×P 11 = 0,09×0,3 = 0,027;

P 2 (3) = P 1 (2)×P 12 + P 2 (2)×P 22 = 0,09×0,4 + 0,20×0,2 = 0,076;

P 3 (3) = P 1 (2)×P 13 + P 2 (2)×P 23 + P 3 (2)×P 33 = 0,217;

P 4 (3) = P 1 (2)×P 14 + P 2 (2)×P 24 + P 3 (2)×P 34 + P 4 (2)×P 44 = 0,680.

Итак, вероятности состояний ЭВМ после трех проверок следующие: P 1 (3) = 0,027; P 2 (3) = 0,076; P 3 (3) = 0,217; P 4 (3) = 0,680.

Задача 1. По некоторой цели ведется стрельба четырьмя выстрелами в моменты времени t 1 , t 2 , t 3 , t 4 .

Возможные состояния системы: S 1 - цель невредима; S 2 - цель незначительно повреждена; S 3 - цель получила значительные повреждения; S 4 - цель полностью поражена. В начальный момент времени цель находится в состоянии S 1 . Определить вероятности состояний цели после четырех выстрелов если матрица переходных вероятностей имеет вид.

Однородной называют цепь Маркова, для которой условная вероятностьперехода из состоянияв состояниене зависит от номера испытания. Для однородных цепей вместо
используют обозначение
.

Примером однородной цепи Маркова могут служить случайные блуждания. Пусть на прямой Oxв точке с целочисленной координатойx=nнаходится материальная частица. В определенные моменты времени
частица скачкообразно меняет свое положение (например, с вероятностьюpможет сместиться вправо и с вероятностью 1 –p– влево). Очевидно, координата частицы после скачка зависит от того, где находилась частица после непосредственно предшествующего скачка, и не зависит от того, как она двигалась в предшествующие моменты времени.

В дальнейшем ограничимся рассмотрением конечных однородных цепей Маркова.

Переходные вероятности. Матрица перехода.

Переходной вероятностью
называют условную вероятность того, что из состоянияв итоге следующего испытания система перейдет в состояние. Таким образом, индексотносится к предшествующему, а- к последующему состоянию.

Матрицей перехода системы называют матрицу, которая содержит все переходные вероятности этой системы:

, где представляют вероятности перехода за один шаг.

Отметим некоторые особенности матрицы перехода.

Равенство Маркова

Обозначим через
вероятность того, что в результатеnшагов (испытаний) система перейдет из состоянияв состояние. Например,
- вероятность перехода за 10 шагов из третьего состояния в шестое. Отметим, что приn= 1 эта вероятность сводится просто к переходной вероятности
.

Возникает вопрос, как, зная переходные вероятности
, найти вероятности перехода состоянияв состояниезаnшагов. С этой целью вводится в рассмотрение промежуточное (междуи) состояниеr. Другими словами, полагают, что из первоначального состояниязаmшагов система перейдет в промежуточное состояниеrс вероятностью
, после чего за оставшиесяn–mшагов из промежуточного состоянияrона перейдет в конечное состояниес вероятностью
. Используя формулу полной вероятности, можно показать, что справедлива формула

Эту формулу называют равенством Маркова .

Зная все переходные вероятности
, т.е. зная матрицу переходаиз состояния в состояние за один шаг, можно найти вероятности
перехода из состояние в состояние за два шага, а значит, и саму матрицу перехода, далее – по известной матрице- найтии т.д.

Действительно, полагая в равенстве Маркова n= 2,m= 1 получим

или
. В матричном виде это можно записать как
.

Полагая n=3,m=2, получим
. В общем случае справедливо соотношение
.

Пример . Пусть матрица переходаравна

Требуется найти матрицу перехода
.

Умножая матрицу саму на себя, получим
.

Для практических применений чрезвычайно важным является вопрос о расчете вероятности нахождения системы в том или ином состоянии в конкретный момент времени. Решение этого вопроса требует знания начальных условий, т.е. вероятностей нахождения системы в определенных состояниях в начальный момент времени. Начальным распределением вероятностей марковской цепи называется распределение вероятностей состояний в начале процесса.

Здесь через
обозначена вероятность нахождения системы в состояниив начальный момент времени. В частном случае, если начальное состояние системы в точности известно (например
), то начальная вероятность
, а все остальные равны нулю.

Если для однородной цепи Маркова заданы начальное распределение вероятностей и матрица перехода, то вероятности состояний системы на n-м шаге
вычисляются по рекуррентной формуле

.

Для иллюстрации приведем простой пример. Рассмотрим процесс функционирования некоторой системы (например, прибора). Пусть прибор в течение одних суток может находиться в одном из двух состояний – исправном () и неисправном (). В результате массовых наблюдений за работой прибора составлена следующая матрица перехода
,

где - вероятность того, что прибор останется в исправном состоянии;

- вероятность перехода прибора из исправного в неисправное состояние;

- вероятность перехода прибора из неисправного в исправное состояние;

- вероятность того, что прибор останется в состоянии "неисправен".

Пусть вектор начальных вероятностей состояний прибора задан соотношением

, т.е.
(в начальный момент прибор был неисправен). Требуется определить вероятности состояния прибора через трое суток.

Решение : Используя матрицу перехода, определим вероятности состояний после первого шага (после первых суток):

Вероятности состояний после второго шага (вторых суток) равны

Наконец, вероятности состояний после третьего шага (третьих суток) равны

Таким образом, вероятность того, что прибор будет находиться в исправном состоянии равна 0,819, и того, что в неисправном – соответственно 0,181.